Advanced Math 3-1 (Day 2)
Compound Interest and Exponential Growth/Decay

Simple Interest Formula - I $=P_{r} t$ \rightarrow Principal - starting money

Compound Interest Formula -

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \text { number of } \text { componnds/year }
$$

Continuously Compounded Interest Formula $-A=P e^{r t}$

Exponential Growth/Decay -

47) Completed the table to determine the balance A for P dollars invested at rate r for t years compounded n times per year.

$$
\begin{array}{rlr}
P=\$ 2500, r=12 \%, & A & =P\left(1+\frac{r}{n}\right)^{n t} \\
t=10 \mathrm{grs} & & \\
& & =2500\left(1+\frac{12}{n}\right)^{n \cdot 10}
\end{array} \quad 2500 e^{\wedge}(\text { rene })
$$

n	1	2	4	12	365	Continuous
A	$* 7764.6$	8017.8	8155.1	8251	8278.7	8300.29

51) Completed the table to determine the amount of money P that should be invested at rate r to produce a final balance of $\$ 100,000$ in t years.

t	1	10	20	30	40	50
P						

$r=12 \%$, compounded continuously,

$L_{2}(1)=88692.043671714$
59) A certain type of bacteria increases according to the model

$$
P(t)=\underbrace{1000}_{\text {starting amount }} e^{0.2197 t}
$$

where t is the time in hours. Find $P(0), P(5)$, and $P(10)$.

> Assignment:
> pg. 307
> 50, 52,
> 53-64 all

